Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 103
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 29  |  Issue : 1  |  Page : 32-39

Atmospheric pollen count in North Delhi region


Department of Respiratory Allergy and Applied Immunology, National Centre of Respiratory Allergy Asthma and Immunology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India

Correspondence Address:
Raj Kumar
Department of Respiratory Allergy and Applied Immunology, National Centre of Respiratory Allergy Asthma and Immunology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi - 110 007
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-6691.162980

Rights and Permissions

Introduction: Airborne pollen data varies from place to place due to floristic diversities in a geographical region. In Delhi, a variety of trees, weeds, and grasses produce a variety of pollens, and climatic conditions are also known to affects the pollen concentration. Aim: This study was designed to describe the prevalence of pollen in North Delhi region during the year 2013-2014. Materials and Methods: Atmospheric pollen was collected on daily bases by using Volumetric Burkard (UK) 24 h air sampler with the speed of 10 L/min airflow. Pollen was counted with light microscopy (Olympus, Japan) and the average monthly pollen count was studied from May, 2013 to April 2014. Results: A total of 42,232 pollens were collected for 1-year (2013-2014). The maximum and minimum pollen was counted for year 2013 in the month of September (4805 pollens) and December, (1973 pollens), respectively. The average pollen concentration started increasing in the year 2013 from the months of May to June (239.33, 279.38 pollen/m 3 /month) and started falling in 2013 in months of July to August (227.47, 148.60 pollens/m 3 /month). The pollen concentration again started increasing in year 2013 in the months of September, October and November (282.65, 275.73, and 245.44 pollens/m 3 /months) and started declining in December 2013 till the months of next year 2014 January, February, (131.53, 133.82, 139.56 pollens/m 3 /months). An increase in pollen concentration was noted in 2014 in the months of March and April (274.31, 263.75 pollens/m 3 /month). The humidity correlated significantly with the average pollen count in the year 2013 in June (P = 0.025, r = −0.556), July (P = 0.00, r = −0.848), August (P = 0.033, r = −0.552), September (P = 0.007, r = −0.627) and October (P = 0.001, r = −0.755). The average temperature correlated significantly with the average pollen count in 2013 October (P = 0.042, r = −0.530). Conclusion: The current study provides a preliminary data of pollen count in North Delhi region. The results will provide information to the allergy practitioners in order to advice avoidance of exposure to allergens.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1865    
    Printed16    
    Emailed0    
    PDF Downloaded157    
    Comments [Add]    

Recommend this journal